References

References#

[AI95]

Joshua D Angrist and Guido W Imbens. Two-stage least squares estimation of average causal effects in models with variable treatment intensity. Journal of the American statistical Association, 90(430):431–442, 1995.

[AIR96]

Joshua D Angrist, Guido W Imbens, and Donald B Rubin. Identification of causal effects using instrumental variables. Journal of the American statistical Association, 91(434):444–455, 1996.

[Aus14]

Peter C Austin. A comparison of 12 algorithms for matching on the propensity score. Statistics in medicine, 33(6):1057–1069, 2014.

[BCG17]

James Lopez Bernal, Steven Cummins, and Antonio Gasparrini. Interrupted time series regression for the evaluation of public health interventions: a tutorial. International journal of epidemiology, 46(1):348–355, 2017.

[Bol89]

Kenneth A. Bollen. Structural Equations with Latent Variables. John Wiley & Sons, 1989.

[Bun04]

Derek W Bunn. Modelling Prices in Competitive Electricity Markets. John Wiley & Sons, 2004.

[BIM20]

Derek W Bunn, John N Inekwe, and David MacGeehan. Analysis of the fundamental predictability of prices in the british balancing market. IEEE Transactions on Power Systems, 36(2):1309–1316, 2020.

[CK08]

Marco Caliendo and Sabine Kopeinig. Some practical guidance for the implementation of propensity score matching. Journal of economic surveys, 22(1):31–72, 2008.

[CCD+18]

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1):C1–C68, 2018.

[Chi02]

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507–554, 2002.

[DL07]

Stephen G Donald and Kevin Lang. Inference with difference-in-differences and other panel data. The review of Economics and Statistics, 89(2):221–233, 2007.

[Fis35]

Ronald A Fisher. The design of experiments. Oliver And Boyd; Edinburgh, 1935.

[FBP24]

Jonathan Fuhr, Philipp Berens, and Dominik Papies. Estimating causal effects with double machine learning–a method evaluation. arXiv preprint arXiv:2403.14385, 2024.

[Gra69]

Clive W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3):424–438, 1969.

[HR20]

Miguel A Hernan and James M Robins. Causal Inference: What If. Chapman & Hall/CRC, 2020.

[HyvarinenO00]

Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications. Neural networks, 13(4-5):411–430, 2000.

[HyvarinenSH08]

Aapo Hyvärinen, Shohei Shimizu, and Patrik O Hoyer. Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-gaussianity. In Proceedings of the 25th international conference on Machine learning, 424–431. 2008.

[HyvarinenZSH10]

Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, and Patrik O Hoyer. Estimation of a structural vector autoregression model using non-gaussianity. Journal of Machine Learning Research, 2010.

[IIZ+23]

Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, and Shohei Shimizu. Python package for causal discovery based on lingam. Journal of Machine Learning Research, 24(14):1–8, 2023.

[KS18]

Daniel S Kirschen and Goran Strbac. Fundamentals of power system economics. John Wiley & Sons, 2018.

[KF09]

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.

[Lau96]

Steffen L Lauritzen. Graphical Models. Oxford University Press, 1996.

[LL17]

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in neural information processing systems, 2017.

[Lutkepohl10]

Helmut Lütkepohl. Macroeconometrics and Time Series Analysis (Impulse response function Chapter). Springer, 2010.

[MCM+13]

Juan M Morales, Antonio J Conejo, Henrik Madsen, Pierre Pinson, and Marco Zugno. Integrating renewables in electricity markets: operational problems. Volume 205. Springer Science & Business Media, 2013.

[Ney90]

Jerzy Neyman. On the application of probability theory to agricultural experiments. essay on principles. Statistical Science, 5(4):465–472, 1990. Translated and edited by DM Dabrowska and TP Speed.

[Pea00]

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

[Pea22]

Judea Pearl. Causal inference: history, perspectives, adventures, and unification (an interview with judea pearl). Observational Studies, 8(2):23–36, 2022.

[PM18]

Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of Cause and Effect. Basic Books, 2018.

[Pea33]

Egon S Pearson. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika, 20(1/2):175–240, 1933.

[PMJScholkopf14]

Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with continuous additive noise models. Journal of Machine Learning Research, 2014.

[Rub74]

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5):688, 1974.

[Set09]

Burr Settles. Active learning literature survey. Technical Report, 2009.

[SHHyvarinen+06]

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 2006.

[S+19]

Aleksandrs Slivkins and others. Introduction to multi-armed bandits. Foundations and Trends® in Machine Learning, 12(1-2):1–286, 2019.

[SGS01]

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, prediction, and search. MIT press, 2001.

[Win02]

Eyal Winter. The shapley value. Handbook of game theory with economic applications, 3:2025–2054, 2002.

[YJVDS18]

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: estimation of individualized treatment effects using generative adversarial nets. In International conference on learning representations. 2018.